HomeBlogAbout Me

Postico 1 3 2 – A Modern Postgresql Client Setting



Postico – A modern PostgreSQL client. November 24, 2020; Business; AppStore QR-Code ‎Postico. Developer: Jakob Egger. Filter rows that contain a search term, or set up advanced filters with multiple conditions. Quickly view rows from related tables, and save time by editing multiple rows at once. There are two ways to connect to a local PostgreSQL server: Using a TCP connection (localhost, 127.0.0.1,::1) Using a Unix socket connection (/tmp/.s.PGSQL) Postico always uses TCP connections. Postico can't use socket connections because sandboxed apps are not allowed to access unix sockets outside their sandbox.

  1. Postico 1 3 2 – A Modern Postgresql Client Setting Permissions
  2. Postico 1 3 2 – A Modern Postgresql Client Setting Tool
  3. Postico 1 3 2 – A Modern Postgresql Client Settings
  4. Postico 1 3 2 – A Modern Postgresql Client Setting Example

Get Postgres Tips and Tricks

Subscribe to get advanced Postgres how-tos.

Setting
23.3. Character Set Support
PrevUpChapter 23. LocalizationHomeNext
23.3.1. Supported Character Sets
23.3.2. Setting the Character Set
23.3.3. Automatic Character Set Conversion Between Server and Client
23.3.4. Further Reading

The character set support in PostgreSQL allows you to store text in a variety of character sets (also called encodings), including single-byte character sets such as the ISO 8859 series and multiple-byte character sets such as EUC (Extended Unix Code), UTF-8, and Mule internal code. All supported character sets can be used transparently by clients, but a few are not supported for use within the server (that is, as a server-side encoding). The default character set is selected while initializing your PostgreSQL database cluster using initdb. It can be overridden when you create a database, so you can have multiple databases each with a different character set.

An important restriction, however, is that each database's character set must be compatible with the database's LC_CTYPE (character classification) and LC_COLLATE (string sort order) locale settings. For C or POSIX locale, any character set is allowed, but for other libc-provided locales there is only one character set that will work correctly. (On Windows, however, UTF-8 encoding can be used with any locale.) If you have ICU support configured, ICU-provided locales can be used with most but not all server-side encodings.

Table 23.1 shows the character sets available for use in PostgreSQL.

Table 23.1. PostgreSQL Character Sets

NameDescriptionLanguageServer?ICU?Bytes/CharAliases
BIG5Big FiveTraditional ChineseNoNo1-2WIN950, Windows950
EUC_CNExtended UNIX Code-CNSimplified ChineseYesYes1-3
EUC_JPExtended UNIX Code-JPJapaneseYesYes1-3
EUC_JIS_2004Extended UNIX Code-JP, JIS X 0213JapaneseYesNo1-3
EUC_KRExtended UNIX Code-KRKoreanYesYes1-3
EUC_TWExtended UNIX Code-TWTraditional Chinese, TaiwaneseYesYes1-3
GB18030National StandardChineseNoNo1-4
GBKExtended National StandardSimplified ChineseNoNo1-2WIN936, Windows936
ISO_8859_5ISO 8859-5, ECMA 113Latin/CyrillicYesYes1
ISO_8859_6ISO 8859-6, ECMA 114Latin/ArabicYesYes1
ISO_8859_7ISO 8859-7, ECMA 118Latin/GreekYesYes1
ISO_8859_8ISO 8859-8, ECMA 121Latin/HebrewYesYes1
JOHABJOHABKorean (Hangul)NoNo1-3
KOI8RKOI8-RCyrillic (Russian)YesYes1KOI8
KOI8UKOI8-UCyrillic (Ukrainian)YesYes1
LATIN1ISO 8859-1, ECMA 94Western EuropeanYesYes1ISO88591
LATIN2ISO 8859-2, ECMA 94Central EuropeanYesYes1ISO88592
LATIN3ISO 8859-3, ECMA 94South EuropeanYesYes1ISO88593
LATIN4ISO 8859-4, ECMA 94North EuropeanYesYes1ISO88594
LATIN5ISO 8859-9, ECMA 128TurkishYesYes1ISO88599
LATIN6ISO 8859-10, ECMA 144NordicYesYes1ISO885910
LATIN7ISO 8859-13BalticYesYes1ISO885913
LATIN8ISO 8859-14CelticYesYes1ISO885914
LATIN9ISO 8859-15LATIN1 with Euro and accentsYesYes1ISO885915
LATIN10ISO 8859-16, ASRO SR 14111RomanianYesNo1ISO885916
MULE_INTERNALMule internal codeMultilingual EmacsYesNo1-4
SJISShift JISJapaneseNoNo1-2Mskanji, ShiftJIS, WIN932, Windows932
SHIFT_JIS_2004Shift JIS, JIS X 0213JapaneseNoNo1-2
SQL_ASCIIunspecified (see text)anyYesNo1
UHCUnified Hangul CodeKoreanNoNo1-2WIN949, Windows949
UTF8Unicode, 8-bitallYesYes1-4Unicode
WIN866Windows CP866CyrillicYesYes1ALT
WIN874Windows CP874ThaiYesNo1
WIN1250Windows CP1250Central EuropeanYesYes1
WIN1251Windows CP1251CyrillicYesYes1WIN
WIN1252Windows CP1252Western EuropeanYesYes1
WIN1253Windows CP1253GreekYesYes1
WIN1254Windows CP1254TurkishYesYes1
WIN1255Windows CP1255HebrewYesYes1
WIN1256Windows CP1256ArabicYesYes1
WIN1257Windows CP1257BalticYesYes1
WIN1258Windows CP1258VietnameseYesYes1ABC, TCVN, TCVN5712, VSCII

Not all client APIs support all the listed character sets. For example, the PostgreSQL JDBC driver does not support MULE_INTERNAL, LATIN6, LATIN8, and LATIN10.

The SQL_ASCII setting behaves considerably differently from the other settings. When the server character set is SQL_ASCII, the server interprets byte values 0-127 according to the ASCII standard, while byte values 128-255 are taken as uninterpreted characters. No encoding conversion will be done when the setting is SQL_ASCII. Thus, this setting is not so much a declaration that a specific encoding is in use, as a declaration of ignorance about the encoding. In most cases, if you are working with any non-ASCII data, it is unwise to use the SQL_ASCII setting because PostgreSQL will be unable to help you by converting or validating non-ASCII characters.

initdb defines the default character set (encoding) for a PostgreSQL cluster. For example,

sets the default character set to EUC_JP (Extended Unix Code for Japanese). You can use --encoding instead of -E if you prefer longer option strings. If no -E or --encoding option is given, initdb attempts to determine the appropriate encoding to use based on the specified or default locale.

You can specify a non-default encoding at database creation time, provided that the encoding is compatible with the selected locale:

This will create a database named korean that uses the character set EUC_KR, and locale ko_KR. Another way to accomplish this is to use this SQL command:

Notice that the above commands specify copying the template0 database. When copying any other database, the encoding and locale settings cannot be changed from those of the source database, because that might result in corrupt data. For more information see Section 22.3.

The encoding for a database is stored in the system catalog pg_database. You can see it by using the psql-l option or the l command.

Important

On most modern operating systems, PostgreSQL can determine which character set is implied by the LC_CTYPE setting, and it will enforce that only the matching database encoding is used. On older systems it is your responsibility to ensure that you use the encoding expected by the locale you have selected. A mistake in this area is likely to lead to strange behavior of locale-dependent operations such as sorting.

PostgreSQL will allow superusers to create databases with SQL_ASCII encoding even when LC_CTYPE is not C or POSIX. As noted above, SQL_ASCII does not enforce that the data stored in the database has any particular encoding, and so this choice poses risks of locale-dependent misbehavior. Using this combination of settings is deprecated and may someday be forbidden altogether.

23.3.3. Automatic Character Set Conversion Between Server and Client

PostgreSQL supports automatic character set conversion between server and client for certain character set combinations. The conversion information is stored in the pg_conversion system catalog. PostgreSQL comes with some predefined conversions, as shown in Table 23.2. You can create a new conversion using the SQL command CREATE CONVERSION.

Table 23.2. Client/Server Character Set Conversions

Server Character SetAvailable Client Character Sets
BIG5not supported as a server encoding
EUC_CNEUC_CN, MULE_INTERNAL, UTF8
EUC_JPEUC_JP, MULE_INTERNAL, SJIS, UTF8
EUC_JIS_2004EUC_JIS_2004, SHIFT_JIS_2004, UTF8
EUC_KREUC_KR, MULE_INTERNAL, UTF8
EUC_TWEUC_TW, BIG5, MULE_INTERNAL, UTF8
GB18030not supported as a server encoding
GBKnot supported as a server encoding
ISO_8859_5ISO_8859_5, KOI8R, MULE_INTERNAL, UTF8, WIN866, WIN1251
ISO_8859_6ISO_8859_6, UTF8
ISO_8859_7ISO_8859_7, UTF8
ISO_8859_8ISO_8859_8, UTF8
JOHABnot supported as a server encoding
KOI8RKOI8R, ISO_8859_5, MULE_INTERNAL, UTF8, WIN866, WIN1251
KOI8UKOI8U, UTF8
LATIN1LATIN1, MULE_INTERNAL, UTF8
LATIN2LATIN2, MULE_INTERNAL, UTF8, WIN1250
LATIN3LATIN3, MULE_INTERNAL, UTF8
LATIN4LATIN4, MULE_INTERNAL, UTF8
LATIN5LATIN5, UTF8
LATIN6LATIN6, UTF8
LATIN7LATIN7, UTF8
LATIN8LATIN8, UTF8
LATIN9LATIN9, UTF8
LATIN10LATIN10, UTF8
MULE_INTERNALMULE_INTERNAL, BIG5, EUC_CN, EUC_JP, EUC_KR, EUC_TW, ISO_8859_5, KOI8R, LATIN1 to LATIN4, SJIS, WIN866, WIN1250, WIN1251
SJISnot supported as a server encoding
SHIFT_JIS_2004not supported as a server encoding
SQL_ASCIIany (no conversion will be performed)
UHCnot supported as a server encoding
UTF8all supported encodings
WIN866WIN866, ISO_8859_5, KOI8R, MULE_INTERNAL, UTF8, WIN1251
WIN874WIN874, UTF8
WIN1250WIN1250, LATIN2, MULE_INTERNAL, UTF8
WIN1251WIN1251, ISO_8859_5, KOI8R, MULE_INTERNAL, UTF8, WIN866
WIN1252WIN1252, UTF8
WIN1253WIN1253, UTF8
WIN1254WIN1254, UTF8
WIN1255WIN1255, UTF8
WIN1256WIN1256, UTF8
WIN1257WIN1257, UTF8
WIN1258WIN1258, UTF8

To enable automatic character set conversion, you have to tell PostgreSQL the character set (encoding) you would like to use in the client. There are several ways to accomplish this:

  • Using the encoding command in psql. encoding allows you to change client encoding on the fly. For example, to change the encoding to SJIS, type:

  • libpq (Section 34.10) has functions to control the client encoding.

  • Using SET client_encoding TO. Setting the client encoding can be done with this SQL command:

    Also you can use the standard SQL syntax SET NAMES for this purpose:

    To query the current client encoding:

    To return to the default encoding:

  • Using PGCLIENTENCODING. If the environment variable PGCLIENTENCODING is defined in the client's environment, that client encoding is automatically selected when a connection to the server is made. (This can subsequently be overridden using any of the other methods mentioned above.)

  • Using the configuration variable client_encoding. If the client_encoding variable is set, that client encoding is automatically selected when a connection to the server is made. (This can subsequently be overridden using any of the other methods mentioned above.)

If the conversion of a particular character is not possible — suppose you chose EUC_JP for the server and LATIN1 for the client, and some Japanese characters are returned that do not have a representation in LATIN1 — an error is reported.

If the client character set is defined as SQL_ASCII, encoding conversion is disabled, regardless of the server's character set. Just as for the server, use of SQL_ASCII is unwise unless you are working with all-ASCII data.

Postico 1 3 2 – A Modern Postgresql Client Setting Permissions

These are good sources to start learning about various kinds of encoding systems.

CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Computing

Contains detailed explanations of EUC_JP, EUC_CN, EUC_KR, EUC_TW.

http://www.unicode.org/

The web site of the Unicode Consortium.

RFC 3629

UTF-8 (8-bit UCS/Unicode Transformation Format) is defined here.

PrevUpNext
23.2. Collation Support Home Chapter 24. Routine Database Maintenance Tasks
8.5.1. Date/Time Input
8.5.2. Date/Time Output
8.5.3. Time Zones
8.5.4. Interval Input
8.5.5. Interval Output

PostgreSQL Mail act on 4 0 1 download free. supports the full set of SQL date and time types, shown in Table 8.9. The operations available on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar, even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

NameStorage SizeDescriptionLow ValueHigh ValueResolution
timestamp [ (p) ] [ without time zone ]8 bytesboth date and time (no time zone)4713 BC294276 AD1 microsecond
timestamp [ (p) ] with time zone8 bytesboth date and time, with time zone4713 BC294276 AD1 microsecond
date4 bytesdate (no time of day)4713 BC5874897 AD1 day
time [ (p) ] [ without time zone ]8 bytestime of day (no date)00:00:0024:00:001 microsecond
time [ (p) ] with time zone12 bytestime of day (no date), with time zone00:00:00+155924:00:00-15591 microsecond
interval [ fields ] [ (p) ]16 bytestime interval-178000000 years178000000 years1 microsecond

Note

The SQL standard requires that writing just timestamp be equivalent to timestamp without time zone, and PostgreSQL honors that behavior. timestamptz is accepted as an abbreviation for timestamp with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The allowed range of p is from 0 to 6.

The interval type has an additional option, which is to restrict the set of stored fields by writing one of these phrases:

Note that if both fields and p are specified, the fields must include SECOND, since the precision applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties which lead to questionable usefulness. In most cases, a combination of date, time, timestamp without time zone, and timestamp with time zone should provide a complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are discouraged from using these types in applications; these internal types might disappear in a future release.

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B for the exact parsing rules of date/time input and for the recognized text fields including months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

where p is an optional precision specification giving the number of fractional digits in the seconds field. Precision can be specified for time, timestamp, and interval types, and can range from 0 to 6. If no precision is specified in a constant specification, it defaults to the precision of the literal value (but not more than 6 digits).

Table 8.10 shows some possible inputs for the date type.

Table 8.10. Date Input

ExampleDescription
1999-01-08ISO 8601; January 8 in any mode (recommended format)
January 8, 1999unambiguous in any datestyle input mode
1/8/1999January 8 in MDY mode; August 1 in DMY mode
1/18/1999January 18 in MDY mode; rejected in other modes
01/02/03January 2, 2003 in MDY mode; February 1, 2003 in DMY mode; February 3, 2001 in YMD mode
1999-Jan-08January 8 in any mode
Jan-08-1999January 8 in any mode
08-Jan-1999January 8 in any mode
99-Jan-08January 8 in YMD mode, else error
08-Jan-99January 8, except error in YMD mode
Jan-08-99January 8, except error in YMD mode
19990108ISO 8601; January 8, 1999 in any mode
990108ISO 8601; January 8, 1999 in any mode
1999.008year and day of year
J2451187Julian date
January 8, 99 BCyear 99 BC

The time-of-day types are time [ (p) ] without time zone and time [ (p) ] with time zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8.11 and Table 8.12.) If a time zone is specified in the input for time without time zone, it is silently ignored. You can also specify a date but it will be ignored, except when you use a time zone name that involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required in order to determine whether standard or daylight-savings time applies. The appropriate time zone offset is recorded in the time with time zone value.

Table 8.11. Time Input

ExampleDescription
04:05:06.789ISO 8601
04:05:06ISO 8601
04:05ISO 8601
040506ISO 8601
04:05 AMsame as 04:05; AM does not affect value
04:05 PMsame as 16:05; input hour must be <= 12
04:05:06.789-8ISO 8601
04:05:06-08:00ISO 8601
04:05-08:00ISO 8601
040506-08ISO 8601
04:05:06 PSTtime zone specified by abbreviation
2003-04-12 04:05:06 America/New_Yorktime zone specified by full name

Table 8.12. Time Zone Input

ExampleDescription
PSTAbbreviation (for Pacific Standard Time)
America/New_YorkFull time zone name
PST8PDTPOSIX-style time zone specification
-8:00ISO-8601 offset for PST
-800ISO-8601 offset for PST
-8ISO-8601 offset for PST
zuluMilitary abbreviation for UTC
zShort form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time zone, but this is not the preferred ordering.) Thus:

and:

are valid values, which follow the ISO 8601 standard. In addition, the common format:

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time zone literals by the presence of a + or - symbol and time zone offset after the time. Hence, according to the standard,

is a timestamp without time zone, while

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before determining its type, and therefore will treat both of the above as timestamp without time zone. To ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

In a literal that has been determined to be timestamp without time zone, PostgreSQL will silently ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in the input string, then it is assumed to be in the time zone indicated by the system's TimeZone parameter, and is converted to UTC using the offset for the timezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the current timezone zone, and displayed as local time in that zone. To see the time in another time zone, either change timezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone normally assume that the timestamp without time zone value should be taken or given as timezone local time. Mad money logo. Board games that use dice. A different time zone can be specified for the conversion using AT TIME ZONE.

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8.13. The values infinity and -infinity are specially represented inside the system and will be displayed unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time values when read. (In particular, now and related strings are converted to a specific time value as soon as they are read.) All of these values need to be enclosed in single quotes when used as constants in SQL commands.

Table 8.13. Special Date/Time Inputs

Client
Input StringValid TypesDescription
epochdate, timestamp1970-01-01 00:00:00+00 (Unix system time zero)
infinitydate, timestamplater than all other time stamps
-infinitydate, timestampearlier than all other time stamps
nowdate, time, timestampcurrent transaction's start time
todaydate, timestampmidnight (00:00) today
tomorrowdate, timestampmidnight (00:00) tomorrow
yesterdaydate, timestampmidnight (00:00) yesterday
allballstime00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, LOCALTIMESTAMP. (See Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

Caution

While the input strings now, today, tomorrow, and yesterday are fine to use in interactive SQL commands, they can have surprising behavior when the command is saved to be executed later, for example in prepared statements, views, and function definitions. The string can be converted to a specific time value that continues to be used long after it becomes stale. Use one of the SQL functions instead in such contexts. For example, CURRENT_DATE + 1 is safer than 'tomorrow'::date.

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres), traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard requires the use of the ISO 8601 format. The name of the SQL output format is a historical accident.) Table 8.14 shows examples of each output style. The output of the date and time types is generally only the date or time part in accordance with the given examples. However, the POSTGRES style outputs date-only values in ISO format.

Table 8.14. Date/Time Output Styles

Style SpecificationDescriptionExample
ISOISO 8601, SQL standard1997-12-17 07:37:16-08
SQLtraditional style12/17/1997 07:37:16.00 PST
Postgresoriginal styleWed Dec 17 07:37:16 1997 PST
Germanregional style17.12.1997 07:37:16.00 PST

Note

ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL accepts that format on input, but on output it uses a space rather than T, as shown above. This is for readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

datestyle SettingInput OrderingExample Output
SQL, DMYday/month/year17/12/1997 15:37:16.00 CET
SQL, MDYmonth/day/year12/17/1997 07:37:16.00 PST
Postgres, DMYday/month/yearWed 17 Dec 07:37:16 1997 PST

Postico 1 3 2 – A Modern Postgresql Client Setting Tool


The date/time style can be selected by the user using the SET datestyle command, the DateStyle parameter in the postgresql.conf configuration file, or the PGDATESTYLE environment variable on the server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format date/time output.

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry. Time zones around the world became somewhat standardized during the 1900s, but continue to be prone to arbitrary changes, particularly with respect to daylight-savings rules. Exactscan pro 18 12 24 download free. PostgreSQL uses the widely-used IANA (Olson) time zone database for information about historical time zone rules. For times in the future, the assumption is that the latest known rules for a given time zone will continue to be observed indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However, the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

  • Although the date type cannot have an associated time zone, the time type can. Time zones in the real world have little meaning unless associated with a date as well as a time, since the offset can vary through the year with daylight-saving time boundaries.

  • The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when using time zones. We do not recommend using the type time with time zone (though it is supported by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

  • A full time zone name, for example America/New_York. The recognized time zone names are listed in the pg_timezone_names view (see Section 52.90). PostgreSQL uses the widely-used IANA time zone data for this purpose, so the same time zone names are also recognized by other software.

  • A time zone abbreviation, for example PST. Such a specification merely defines a particular offset from UTC, in contrast to full time zone names which can imply a set of daylight savings transition rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see Section 52.89). You cannot set the configuration parameters TimeZone or log_timezone to a time zone abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE operator.

  • In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone specifications, as described in Section B.5. This option is not normally preferable to using a named time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents noon local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014-06-04 12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies noon Eastern Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had most recently meant) on the specified date; but, as with the EST example above, this is not necessarily the same as local civil time on that date.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from configuration files stored under ./share/timezone/ and ./share/timezonesets/ of the installation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresql.conf, or in any of the other standard ways described in Chapter 19. There are also some special ways to set it:

  • The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

  • The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the server upon connection.

interval values can be written using the following verbose syntax:

where quantity is a number (possibly signed); unit is microsecond, millisecond, second, minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of the different units are implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For example, '1 12:59:10' is read the same as '1 day 12 hours 59 min 10 sec'. Also, a combination of years and months can be specified with a dash; for example '200-10' is read the same as '200 years 10 months'. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the format with designators of the standard's section 4.4.3.2 or the alternative format of section 4.4.3.3. The format with designators looks like this:

The string must start with a P, and may include a T that introduces the time-of-day units. The available unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order, but units smaller than a day must appear after T. In particular, the meaning of M depends on whether it is before or after T.

Table 8.16. ISO 8601 Interval Unit Abbreviations

AbbreviationMeaning
YYears
MMonths (in the date part)
WWeeks
DDays
HHours
MMinutes (in the time part)
SSeconds

In the alternative format:

the string must begin with P, and a T separates the date and time parts of the interval. The values are given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval column that was defined with a fields specification, the interpretation of unmarked quantities depends on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1' means 1 second. Also, field values to the right of the least significant field allowed by the fields specification are silently discarded. For example, writing INTERVAL '1 day 2:03:04' HOUR TO MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading negative sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04' applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and traditionally treats each field in the textual representation as independently signed, so that the hour/minute/second part is considered positive in this example. If IntervalStyle is set to sql_standard then a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's recommended to attach an explicit sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can have fractional parts; for example '1.5 week' or '01:02:03.45'. Such input is converted to the appropriate number of months, days, and seconds for storage. When this would result in a fractional number of months or days, the fraction is added to the lower-order fields using the conversion factors 1 month = 30 days and 1 day = 24 hours. For example, '1.5 month' becomes 1 month and 15 days. Only seconds will ever be shown as fractional on output.

Postico 1 3 2 – A Modern Postgresql Client Settings

Table 8.17 shows some examples of valid interval input.

Table 8.17. Interval Input

ExampleDescription
1-2SQL standard format: 1 year 2 months
3 4:05:06SQL standard format: 3 days 4 hours 5 minutes 6 seconds
1 year 2 months 3 days 4 hours 5 minutes 6 secondsTraditional Postgres format: 1 year 2 months 3 days 4 hours 5 minutes 6 seconds
P1Y2M3DT4H5M6SISO 8601 format with designators: same meaning as above
P0001-02-03T04:05:06ISO 8601 alternative format: same meaning as above

Internally interval values are stored as months, days, and seconds. This is done because the number of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is involved. The months and days fields are integers while the seconds field can store fractions. Because intervals are usually created from constant strings or timestamp subtraction, this storage method works well in most cases, but can cause unexpected results:

Functions justify_days and justify_hours are available for adjusting days and hours that overflow their normal ranges.

The output format of the interval type can be set to one of the four styles sql_standard, postgres, postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the postgres format. Table 8.18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard's specification for interval literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time only, with no mixing of positive and negative components). Otherwise the output looks like a standard year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the format with designators described in section 4.4.3.2 of the ISO 8601 standard.

Postico 1 3 2 – A Modern Postgresql Client Setting Example

Table 8.18. Interval Output Style Examples

Style SpecificationYear-Month IntervalDay-Time IntervalMixed Interval
sql_standard1-23 4:05:06-1-2 +3 -4:05:06
postgres1 year 2 mons3 days 04:05:06-1 year -2 mons +3 days -04:05:06
postgres_verbose@ 1 year 2 mons@ 3 days 4 hours 5 mins 6 secs@ 1 year 2 mons -3 days 4 hours 5 mins 6 secs ago
iso_8601P1Y2MP3DT4H5M6SP-1Y-2M3DT-4H-5M-6S





Postico 1 3 2 – A Modern Postgresql Client Setting
Back to posts
This post has no comments - be the first one!

UNDER MAINTENANCE

Ring ring